Thyroxine Deficiency in Pregnancy

Timothy Bilash MD MS OBG

Northern Inyo Hospital, Bishop, CA October 20, 2006 1:30 PM

WHI Estrogen recap

The above graph shows the results from the estrogen-only study in a subset of the women who were age 50-59.

In http://courses.washington.edu/bonephys/opestrogen.html. from:
Anderson GL et al, Effects of conjugated equine estrogen in postmenopausal women with hysterectomy:
the Women's Health Initiative randomized controlled trial. Jama 2004;291:1701-12.

Clinical Significance

Prenatal Ultrasound

Thyroxine Deficiency in Pregnancy

Timothy Bilash MD MS OBG

Northern Inyo Hospital, Bishop, CA October 20, 2006 1:30 PM

Thyroid Gland Pic

Figure 1: The human thyroid (1)

Thyroid Physiology

Thyroid has influences on:

- Carbohydrate metabolism
- Growth

...and just about everything else

Thyroid Axis Regulation

- TRH → TSH → T4 →
 T3 + rT3.
- TSH: alpha / beta (unique) units.
- Highest levels occur at night: mild diurnal rhythm.
- Classic endocrine feedback loop.

PowerPoint Slide for Teaching

(Downloading may take up to 30 seconds.

If the slide opens in your browser, select File -> Save As to save it.)

Thyroid Physiology in Pregnancy

Important Hormones

Mother **Fetus HCG TSH TBG** FT4 **FT4** (20-40 weeks)

Serum Proteins

Serum Proteins

Thyroid hormone Structures

Figure 2: Structure of thyroxine and related compounds (4)

Thyroid Hormone in Pregnancy

2 Phases : <u>Production</u> + <u>Conversion/Modification</u>

Central Production

```
( 0-10 weeks) Thyroid, (HCG stim) (10-20 weeks) Thyroid, Liver
```

Peripheral Conversion

(20-40 weeks) Liver, Placenta

Bioactivity ? modified in Pregnancy assay immunoreactivity vs biological activity

Thyroid peroxidase

Thyroid peroxidase or Thyroperoxidase (TPO) is an enzyme mainly expressed in the thyroid that liberates iodine for addition onto throsine residues on thyroglobulin for the production of thyroxine (T4) or triiodothyronine (T3) (thyroid hormones). This process is termed the "organification of iodine".

It is inhibited by the thioamide drugs, such as propylthiouracil. It is a frequent epitope of autoantibodies in autoimmune thyroid disease, reducing T4 levels.

From Wikipedia, the free encyclopedia

Thyroid Metabolism

Activating Enzymes

- D1, inner and outer ring Deiodinase converts <u>T4 -> T3 + I</u> peripherally liver, no change in pregnancy
- D2, outer ring Deiodinase, intracellular conversion of <u>T4 -> T3 + I</u>, <u>rT3 -> T2 + I</u>
 generates in cells locally (T3 determined by T4) important in pregnancy (esp 1st half)
 placenta (1st trimester), amnion/chorion membranes

Thyroid Metablism

De-activating Enzymes

- D3, Inner ring Deiodinase
- Inactivates <u>T4 -> rT3 + I</u>, <u>T3 -> T2 + I</u>
 and limits excess in tissues locally
- Provides <u>I₂ to Fetus</u> (crosses Placenta)
- <u>Limits Placental Transfer</u> of <u>active thyroid</u> <u>hormone</u> to Fetus
- Important 20-40 weeks, placenta

Placental D3

The <u>placenta contains high concentrations of the Type 3</u> or inner-ring iodothyronine deiodinase D3.

The inner-ring <u>deiodination of T4 catalyzed by this enzyme is the source of high concentrations of reverse T3 present in the amniotic fluid.</u>
Reverse T3 levels parallel maternal serum T4 concentrations.

This enzyme may function to <u>reduce the concentration of T3 and T4 in the fetal circulation</u> (the latter being still <u>contributed by 20-30% from thyroid hormones of maternal origin</u> at the time of parturition), although <u>fetal tissue T3 levels can reach adult levels due to the action of the Type 2 deiodinase D2</u>.

The Type 3 deiodinase may also indirectly <u>provide a source of iodide to the fetus</u> via iodothyronine deiodination. In circumstances in which fetal T4 production is reduced or maternal free T4 markedly increased, transplacental passage occurs and fetal serum T4 levels are about one third of normal.

Thyroid Physiology ODINE requirements

80 mcg/day non-pregnant 120 mcg/day pregnant (50% higher), 220 mcg/day pregnant recommended

150 mcg/day avg in <u>US</u> - iodine <u>adequate</u> 70 mcg/day avg in <u>Europe</u> - iodine <u>restricted</u> empties stores by 2 months of pregnancy (10mcg/day loss, despite improved uptake)

Sources: Iodized salt, Fish, Multivitamins

Thyroid Physiology ODINE

There has been a marked decline in lodine excretion
1970 thru1990

Thyroid Buffer System

1) <u>Binding Proteins</u> are made in the liver, carry/store the bulk of <u>inactive</u> hormone

2) Free hormone is active, a small percentage

3) Free hormone is <u>metabolized</u> and inactived (T4 ->T3, T3->rT3, gluconated, sulfated)

Thyroid Physiology TBG (Thyroid Binding Globulin)

- E2 increases TBG (liver stim)
- 500-1000pg/nl threshold to increase TBG *
- Increase to plateau at 20 weeks preg
- TBG lowers FreeT4 after 20 weeks
- TBG lowers the T4/T3 ratio
- Large patient variation

Low Thyroid Symptoms

Hypothyroid

- Fatigue
- Cold hands and feet (Cold Intolerance)
- Dry skin, Dry hair
- Constipation
- •Weight Gain
- Depression / Memory Deficits
- •Infertility, Irregular Menses
- •Elevated Serum Cholesterol
- Anemia

Low Thyroid Symptoms

Hypothyroid - Pregnancy

- Hypertension, Preeclampsia, Fluid Retention
- Diabetes Mellitus/ Glucose Intolerance
- Placental Abruption
- Hydramnios
- Arrythmias
- Failure to progress
- Large birthweight (mild), Low birthweight (severe)
- TTN

High Thyroid Symptoms Hyperthyroid

- Insomnia/ Hyperactivity
- Diarrhea
- Hot sweats
- Weight loss
- Tachycardia/Palpitation
- Hypertension
- Seizures
- Irritability

Fetal Effects

Subclinical Hypothyroidism and Pregnancy. Two studies published in 1999 suggested that maternal hypothyroidism may impair fetal neuropsychological development. In one study, Pop and associates (1999) studied a group of women beginning at 12 weeks' gestation. Children born to women with free T4 levels below the 10th percentile were at increased risk for impaired psychomotor development. In the other study, Haddow and colleagues (1999) retrospectively evaluated children born to 48 untreated women whose scrum thyrotropin values exceeded the 98th percentile. Some offspring of these women had diminished school performance, reading recognition, and IQ scores. Importantly, while described as "subclinically hypothyroid," these women had significantly lower mean serum free thyroxine levels, and thus had overt hypothyroidism. Subsequently, Casey and co-workers (2003) identified subclinical hypothyroidism in 2.3 percent of 17,298 women screened before midpregnancy. These women had significantly higher incidences of preterm birth, placental abruption, and admission of infants to the intensive care nursery (Table 53-4).

Thyroid Mean Values in Pregnancy

◆Mean Values in Pregnancy (Resnik and Creasy p985, Glinoer 97)

	Trimester			
	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>Term</u>
A. ¬TSH (0.2-4.0 mU/L) (.16 pulsatile)	.8	1.1	1.3	2.1 (I2 deficient)
B FT4 (0.8-2.0ng/dl)	1.4	1.1	1.0	
C TT4 (3.9-11.6 mcg/dl)	11	12	12	
D FT3 (1.9-7.1 ng/ml?)	3.3	2.7	2.5	
E T3/T4 molar ratio	2.3	2.4	2.5	

Thyroid Mean Values in Pregnancy

Figure 1. The pattern of serum TSH and hCG changes are shown as a function of

FT4 in Pregnancy

THYROID SCREENING TESTS

Use of TSH as the Screening Test for Hypothyroidism

- TSH is the "bioassay" for thyroid hormone effects on the body
- This assumes that all tissues require the same amount of thyroid hormone as the pituitary gland
- There are no other accurate, sensitive ways to assess thyroid hormone effects on the body
- There are clinical situations where TSH is not an adequate marker for thyroid function

Current TSH Upper Reference Limits

The True "Normal" TSH Range

- The "normal" TSH range is skewed at the upper range by subjects with early autoimmune thyroid disease
- In reference subjects ages 20-29 years, the normal TSH range is 0.40 – 3.56 mU/L (NHANES 2002)
- If TSH levels are normalized to a Gaussian distribution, the normal range is 0.40 – 2.5 mU/L

American Thyroid Association

Figure 13. A proposed algorithm for the systematic screening of thyroid autoimmunity and hypothyroidism during pregnancy, based on the determination of thyroid antibodies (Ab), serum TSH and free T4 concentrations during the first half of pregnancy. GA = gestational age; NL = normal limits; PP = postpartum.

(Adapted, with modifications, and by permission of Glinoer; Trends in Endocrinology and Metabolism 9:403, 1998; Ref 134).

Thyroid Screening ACOG ?

2000). Specifically, the American College of Obstetricians and Gynecologists (2002) concluded that observational data from the Haddow study were consistent with the possibility that subclinical hypothyroidism was associated with adverse neuropsychological development. The College thus recommended against implementation of screening until further studies were done to validate or refute these findings. One ma-

Use of TSH as the Screening Test for Hypothyroidism

- TSH is the "bioassay" for thyroid hormone effects on the body
- This assumes that all tissues require the same amount of thyroid hormone as the pituitary gland
- There are no other accurate, sensitive ways to assess thyroid hormone effects on the body
- There are clinical situations where TSH is not an adequate marker for thyroid function

24-hour TSH levels in a healthy subject

Progression of Mild Thyroid Failure

[Thyroid 13(1):21-32, 2003. © 2003 Mary Ann Liebert, Inc.]

Table 1. Causes of FT4/TSH Discordance in the Absence of Serious Associated Illness

ledscape@			www.medscape.com					
Mis- leading	Res	sult	Likely Causes	Action				
Test	TSH	FT4	Likely ballses	ACIIOII				
	1	N	Untreated—mild hypothyroidism Treated—inadequate L-T4 dose or non-compliance	Measure TPO Ab. Confirm TSH after 6 weeks Increase L-T4 dose/council compliance				
FT4	1	N or↓	Mild (subclinical) hyperthyroidism Overtreatment with T3-containing preparation	7 Autonomous functioning goiter. Measure FT3 to rule out T3-toxicosis.				
	N	1	Common during L-T4 treatent. Abnormal binding proteins (i.e. FDH) Antibody interferences (T4 antibody, HAMA or rheumatoid factor)	Expect higher FT4 with L-T4 Rx. for hypothyroidism & 3. Check FT4 by alternate FT4 method ideally one using physical separation i.e. equilibrium dialysis or ultrafiltration				
	N	1	Binding-protein competitor drugs [see Section -3 B3(c)vi] Pregnancy	Check FT4 by method using minimal dilution Check FT4 by albumin-insensitive method. Use method- and trimester-specific reference ranges				
TSH	1	N	Dysequilibrium (first 6–8 weeks of L-T4 Rx. for primary hypothyroidism) HAMA & other interferences	Recheck TSH before adjusting L-T4 dose. High TSH persists for months after Rx. for severe hypothyroidism Check TSH (new specimen) by alternate method				
	1	N	Dysequilibrium (first 2–3 months post Rx. for hyperthyoidism) Medications, i.e. glucoconticoids, dopamine	Use FT4 and FT3 during early Rx. of hyper to monitor thyroid status. TSH may take months to normalize after starting Rx. for severe hyperthyroidism				
	N or↑	1	TSH-secreting pituitary adenoma	Check TSH (new specimen) by alternate method TRH-stim or thyroid hormone suppression test TSH alpha subunit Pituitary Imaging.				
	N	1	Central hypothyroidism	Reduced bioactivity of immunoreactive TSH ? other signs of pituitary deficiency ? blunted (< 2 fold) TRH response				

		ryrold = 6)	Pregnant (n = 10)		Severely ill (n = 8)		
	Mean	SD	Mean	SD	Mean	SD	
TBG, mg/L	22	(7)	53°	(6)	15.4*	(7)	
T3 uptake	1.01	(0.07)	0.74*	(0.03)	1.08	(0.09)	
T4 uptake	0.87	(0.2)	1.76	(0.2)	0.6	(0.1)	
Total T4, nmol/L	125	(30)	144*	(20)	53*	(38)	
FTI	125	(23)	108	(18)	56*	(36)	
Free T4, ng/L, Abbott	113	(13)	81 *	(40)	90	(42)	
Free T4, ng/L, Coming	19	(6)	12*	(7)	56*	(3)	
Free T4, ng/L, Ameriex	16	(2)	77 ⁶	(1)	53°	(4)	
Total T3, nmol/L	2.1	(0.4)	3.0 ^b	(0.4)	0.85	(0.4)	
Free T3, pmol/L,	6.4	(1.0)	4.35	0.7	16		
Coming Free T3,	4.0	(0.7)	2.6	(0.5)	10		
Ameriex TSH, milli-int. units/L	2.0	(0.8)	3.6*	(1.0)	2.9	(3)	

TBG T3/T4

Fig. 1. Total specific T4 (**) and T3 (***) binding at increasing dilutions of sera in assay buffer, each dilution assayed in duplicate

Case Presentation

Thyroid Levels Change in Pregnancy

	<u>1st</u>	Trimester <u>2nd</u>	<u>3rd</u>		<u>Term</u>
A. □TSH (0.2-4.0 mU/L) TSH (I2 deficient Glinoer 97)	.8	1.1	1.3	(.16, pulsatile)	2.1
B FT4 (0.8-2.0ng/dl)	1.4	1.1	1.0		
C T4 (3.9-11.6 mcg/dl)	11	12	12		
D FT3 (1.9-7.1 ng/ml?)	3.3	2.7	2.5		
E. =T3/T4 molar ratio	2.3	2.4	2.5		

Thyroid Screening Pregnancy

(Thyroid Stimulating Hormone)

- •HCG supresses TSH (Pituitary), stimulates T4 (Thyroid)
- •TSH increase from 10-20weeks (mirrors HCG)
- •TPO-AB(+) skews TSH distribution to higher TSH
- •TWINS, PIH, GTP, HYPEREMESIS (hi HCG lowers TSH)

Thyroid Screening Pregnancy 2

FT4 (0.6-1.6) +/- 0.1

"Free Thyroxine Estimate Test", FreeT4

HCG increases (T4-Thyr), Estradiol decreases (TBG-Liv)

Higher in early pregnancy than non-pregnant, then falls with GA,
but remains in normal range

Thyroid Screening in Pregnancy T4 Total Thyroxine

- +150% increase for Pregnancy normal range (upper normal or elevated)
- 7-18.5 mcg/dl approximate nl range
- Haddow identified 7.9mcg/dl (100nm/dl) as cutoff for hypothyroxinemia

Thyroid Screening in Pregnancy

- Repeat q4-6 weeks (non-pregnant and first trimester)
- q8weeks (2nd and 3rd trimester)
- as close to next dose as possible, late afternoon (diurnal, low at midnite)

Thyroid Screening

Non-Pregnancy

•TSH

$$\leq 2.5$$
 (+/- 0.6) (Consider AACE recs)

• Free T4

0.7-1.7 (in normal range) (+/- 0.1)

Other Tests to consider Antibodies

• Antithyroid Antibodies ATA (-):

TPO-microsomal

ATG (antithyroglobin)

if FreeT4 < 10% ile

- Thyroid Stimulating Antibodies TSI (+)
- Thyroid Blocking Antibodies TBI (-)

Causes Fetal effects (IgG)

Other Tests to consider Iodine Deficiency

- <u>Urinary iodide</u>: <100mcg/24hr (normal 100-500)
- <u>FT3/FT4 molar ratio</u> >2.5 (FreeT3)

(if Iodine deficient or subclinical)

- TSH: increases between 20-40 weeks (if Iodine deficient)
- TG (Thyroglobin): elevation correlates with degree of Iodine Deficiency

TREATMENT

Available Brands of L-T4

- Levothroid (Forrest)
- Levoxyl (King)
- Synthroid (Abbott)
- Unithroid (Watson)

Goals of Thyroxine Treatment

Replacement doses: hypothyroid patients

Goal: Mid - normal TSH

Mean L-T4 dose = 1.7 ug/kg

Suppressive doses: thyroid cancer patients

Goal: Low or suppressed TSH

Mean L-T4 dose = 1.9-2.4 ug/kg

THYROXINE DEFICIENCY

Treatment

- L-thyroxine, estimate 1.7mcg/kg/day qhs (100-200mcg)
 - Pregnancy may require ~25% increase, more with increased GA
 - No food within 1 hour
 - Iron supplements inhibits absorption- take beyond 2 hours
 - Dose depends on brand
 - FreeT4 maintain upper normal vs clinical improvement?
 - TSH can be low in 10-20%, sub-normal in first trimester
 - ? Newer recommendations 1.9-2.4mcg/kg/day
- Iodide, 200mcg/day (if deficient)

Thyroxine Deficiency Problems to consider

- FreeT4 assays are not standardized for pregnancy
- Serum values have *non-normal* distribution
- Serum values are skewed to low values
- Labs *vary* in pregnancy, gestational age, albumin