
Ultramicroscopy 6 (1981) 343- 358 343
North-Holland Publishing Company

S P I D E R - - A M O D U L A R S O F T W A R E S Y S T E M F O R E L E C T R O N I M A G E P R O C E S S I N G

Joachim F R A N K , Brian S H I M K I N * and Helen D O W S E **

Division of Laboratories and Research, New York State Department of Health, Albany, New York 12201, USA

Received 13 April 1981; revised 20 May 1981

The image-processing system SPIDER has been designed to operate on a minicomputer in a multiuser environment.
SPIDER, which can be run either interactive or batch mode, makes a wide range of operations (including contrast
enhancement, Fourier filtration, correlation averaging, and three-dimensional reconstruction) available for analysis of electron
micrographs. The command language supports a hierarchical calling structure, branching commands, and DO-loops similar to
those of FORTRAN.

1. Introduction

1.1. Electron image processing

Image processing has become increasingly important
as a tool for interpretation and enhancement of electron
micrographs. This is evident from recent reviews, which
cover a wide range of apphcations [1-5]. The increased
availability of minicomputers has now put the many
image-processing schemes proposed over the years
within the reach of electron microscopy groups.

Following Smith's scheme [6], the applications can
be roughly grouped into three categories: restoration,
image enhancement, and three-dimensional reconstruc-
tion.

Restoration is the attempt to eliminate distortions
introduced by the objective lens of the electron micro-
scope. Certain approximations in bright field electron
microscopy of weakly scattering objects lead to a linear
system description of image formation [7,8], which al-
lows the object's potential distribution to be computed
from the experimental data [9- 11].

Image enhancement is a summary term denoting
point-for-point operations, or operations involving local
neighbors of image points, which aid in visual interpre-
tation of images. Quantitative methods of image averag-
ing aimed at enhancing the signal-to-noise ratio may
also be included in this category. The importance of

* Present address: Gerber Systems Technology, Post Office
Box 905, South Windsor, Connecticut 06074, USA.

** Present address: General Electric Company, I River Road,
Schenectady, New York 12345, USA.

these methods in specimen-preserving high-resolution
electron microscopy has been widely recognized since
Unwin and Henderson's study of the purple membrane
protein [12]. More recently, averaging methods for single
particles have been developed [13-15], extending low-
dose investigation to a larger class of biological speci-
mens. Multivariate statistical techniques promise to be a
powerful tool in structural analysis of single molecules
and crystals [16,17].

Three-dimensional reconstruction is reconstruction, by
various procedures, of an object's mass distribution in
three dimensions from a series of micrographs showing
the object in different views [4,18,19]. In the special ease
of an object having high symmetry, a single micrograph
may be sufficient [18].

To represent an image recorded on a photographic
film or plate in digital form, one must scan the film or
plate on a computer-controlled digital microdensitome-
ter, where optical density values are read on a raster,
converted into digital form, and written onto a storage
medium (tape, disk). In the reverse operation, often
combined with the scanning function in the same instru-
ment, digitally recorded images are displayed as a fine
raster of points on a photographic film.

The increased flexibility of digital processing can
best be realized when the system is designed in a
modular way (fig. 1). Mathematical operations on images
or sets of images are broken down into the simplest
steps involving an entire image. These steps are stan-
dardized to permit their use in more than one context.
In each step an input image (existing as a file on a mass
storage medium) is processed, and an output file is
created with the same format; the output file can then

0 3 0 4 - 3 9 9 1 / 8 1 / 0 0 0 0 - 0 0 0 0 / $ 0 2 . 5 0 © 1981 Nor th -Hol l and

344 J. Frank et al. / SPIDER--Modular software system for electron image processing

be used as input for a subsequent operation. List and
display operatioris make it possible to check and debug
each processing step separately. Mote involved schemes
can be built from these elementary operations by simply

Fig. 1. Scheme of the data flow in a modular image processing
system. Operation A creates image I' from input image I. At
the end of operation A, I' resides along with I on a mass
storage medium and can be listed and displayed before being
subjected to step B.

stringing them together in a virtually infinite number of
ways. The first comprehensive image-processing system
with this design philosophy, VICAR [20], was developed
at the Jet Propulsion Laboratory in Pasadena in the
1960s.

If a fast graytone display device is available, the
decision on which processing step to choose next in a
series of operations can be based on the result of the
immediately preceding step, making the system interac-
tive.

IMAGIC [30] are designed for minicomputers with 64
Kb storage or less.

Some correspondences exist between SPIDER and
SEMPER [15,26] in the command language structure
and in the system design. However, SEMPER is dis-
tinguished by freer rules of format and register assign-
ments, while SPIDER has greater flexibility in the dy-
namic features of the language.

One difference between these two systems is that
SPIDER supports a full dialogue with the user by
printing out solicitation messages on the terminal,
whereas SEMPER only returns results or error mes-
sages. Our experience is that solicitation messages in
operations (as well as user-created solicitation messages
in procedures; see section 3.6) are an invaluable aid in
processing with a modular software system. With so
many operations available, it is very difficult to mem-
orize all of the various input sequences required. In
contrast, the solicitation messages help even inexperi-
enced users in interactive SPIDER sessions to compre-
hend and use the processing system within a short time.
Interactive sessions also provide training in extended
use of the language in procedure and batch command
files.

The most comprehensive program package for three-
dimensional reconstruction and various two-dimensional
filtrations, which was developed at the Medical Re-
search Council in Cambridge [31], is not a modular
system in the sense described here. Rather it is a collec-
tion of programs that lacks the cohesiveness and versa-
tility of other systems listed in table 1.

Development of a multipurpose software system is a
very laborious task, often a byproduct of research activ-
ity. The successful design and implementation of such a
system may therefore precede its publication by several
years. For instance, EM existed in its basic form in
1970, 10 years before it was first described in the
literature [29].

1.3. SPIDER hardware configuration and design consider-
ations

1.2. Existing modular software systems

The need for a modular design in electron image-
processing systems has been recognized by a number of
groups [6,21-30] and has been answered in various
ways, depending on the particular computer installa-
tions of the originating laboratories. Of the software
systems listed in table 1, IMPROC [27], MDPP [6], and
EM [29] are written for large machines, while SEMPER
[25], SPIDER [21], MIRAGE [22], PIC [28], and

SPIDER (System for Processing of Image Data in
Electron microscopy and Related fields) was developed
at the New York State Department of Health as a
general-user facility for a wide range of applications
associated with high-voltage and conventional-voltage
microscopes. Among these applications are enhance-
ment of low-contrast electron micrographs [32], com-
puter filtration [33], single-molecule averaging [13-15],
three-dimensional reconstruction [34], and evaluation of
electron diffraction information.

345

8

I:I
0

~ 3

m

v

C

v

~2

0

Z

l~ ~4)4 ~ ~ 1,4 1~

o ~

~ ~ ~.~

~ ~ ~ ~i -~
~.~ !~ ~.~

r~

. r "

0

0 ' .~

"~ 0 ~ " ~

E ~
8 ~

0 ~

n ~

a ~

" ~ °

• ~; o o ~ . .~

• • ~ ~.~

0

0

0

0 0

346 J. Frank et aL / SPIDER--Modular software system for electron image processing

The hardware consists of a Digital Equipment Cor-
poration (DEC) PDP- I I / 45 computer, two 1600-bpi
tape units, two 176-Mb disk units, a VERSATEC
printer/plotter, a line printer, a Princeton Electronics
Product (PEP) 801 graytone storage display system, and
a Perkin Elmer PDS 1010A flatbed microdensitometer.
The microdensitometer is run by a DEC P D P - I I / 0 5
computer operating independently" of the P D P - l l / 4 5
and equipped with a tape unit and a film-writing op-
tion.

Some of the design requirements underlying the
SPIDER system were very similar to those spelled out
by Smith [6]: that the system be easily accessible to
users having limited experience with computers; that all
operations be available in a single job; that options for
display, listing, and permanent storage of images be
available; that installat ion-dependent features be
avoided, where possible; and that the system be capable
of processing any number of images with arbitrary sizes
(within limits) and formats. Additional restrictions were
imposed by our reliance on a small computer in a
multiuser environment.

Averaging of single molecules by correlation meth-
ods [13-15] requires the processing of a large number of
images that are realizations of the same molecule projec-
tion. Other applications, such as three-dimensional
reconstruction from projections [34,35], also involve a
series of files that must be subjected to essentially
identical operations. These applications demand an effi-
cient mechanism for defining repeated operations or
sets of operations over a series of images. DO-loops that
can be nested up to three deep were created in SPIDER
for this purpose.

Finally, there were requirements for a hierarchical
command structure and for a general mechanism to
transfer values from one operation to another and from
one run of the program system to another.

All of these requirements have been realized in a way
that may be of general interest in the design of modular
software systems.

2, Sy~emdesign

2.1. General

The SPIDER system consists of a master task
DRIVER and a set of slave tasks, which are run under
the DEC R S X l l M operating system in a multiuser
environment (fig. 2). The slave tasks are started by
DRIVER and return control to DRIVER when finished.
Each slave task performs a subset of the 120 operations

l J!

Fig. 2. Schematic representation of SPIDER procesing system
[21]. DRIVER and the slave tasks communicate with each
other by three means: (1) START/RESUME directives, (2)
SEND/RECEIVE directives to pass the name of the current
working area and project extension to the slave task, and (3) a
parameter containing all information pertinent to the session
and the current processing stage. The control sequence for the
processing session is either contained in the sequential com-
mand (batch mode) or entered directly from the terminal
(interactive mode). In the latter case, a log file stores all user
input for later reference. (Reproduced with kind permission of
the Microscopical Society of Canada.)

now available. A session is defined as a set of operations
between the start of DRIVER and an end ("EN")
command. Each session is distinguished from other
parallel sessions by a unique project code. The user starts
a session by executing DRIVER and specifying the
project code and the data library he wishes to access.
The image-processing commands are entered either di-
rectly on a terminal (interactive operation) or via a
sequential command file previously prepared by using
the text editor (batch operation). Procedure files, a spe-
cial class of command files which allow run-time re-
placements, can be invoked interchangeably with the
basic commands in either interactive or batch operation.

Upon encountering an operation command (e.g.
" R T " for rotate), DRIVER activates the appropriate
slave task and suspends itself. Once activated, the slave
task performs the operation, soliciting any information
required (names of input files, values of processing
parameters, etc.) from the user. The slave task then asks
for the next operation command and continues process-
hag. When it encounters a command not contained
among its operations, the slave task reactivates

J. Frank et al. / SPIDER--Modular software system for electron image processing 347

DRIVER, passes on to DRIVER the current input line,
and exits. DRIVER then continues as above.

The main advantages of this approach are minimiza-
tion of compile and link time for program changes,
minimization of core use, and an open-ended system
design. DRIVER communicates with the slave tasks by
means of a SEND/RECEIVE message and a sequential
parameter file. The SEND/RECEIVE message contains
the name of the user's working area and the name of the
parameter file. This file, as well as other temporary
system-generated files to be mentioned later, has a
name unique to the session, so that two or more SPIDER
sessions can be run simultaneously. Any information
needed by the slave task (the file extension specifying
the data library, the current command-file name, file
pointers, etc.) is written to the parameter file by
DRIVER and read by the slave task upon activation.
Before exiting, the slave task updates the parameter file.
Communication between 'DRIVER and the slave tasks,
as well as the activation, suspension, and exiting of the
various tasks, is transparent to the user.

DRIVER is the only task that retains all information
pertinent to the session. It handles all global switches
and system-related operations (DO-loops, procedures,
etc.), while the slave tasks handle all operations in-
volving data processing (e.g. Fourier transformation,
masking, and rotation of images).

2.2. Coding

With a few expectations, all main programs and
subroutines are written in FORTRAN IV. Subroutines
for system-related functions (such as read/write accesses
to the disk, communication with DRIVER, reading of
parameter values, opening of files, and updating of
statistical information) are standardized, facilitating the
implementation of new operations into existing slave
tasks or the creation of a new slave task.

2.3. Registers

Up to 100 storage spaces are available for storage
and transfer of important values during the SPIDER
session. The corresponding array of floating point num-
bers is passed from DRIVER to the slave tasks and vice
versa as part of the parameter file. The storage spaces
are called registers and are invoked in the command
language by the symbols X0... X99, which may take the
place of any integer or floating point number expected
in the command stream. Registers are thus an important
tool for exchange of information between operations
within 'a session.

2.4. Global switches

Global switches are implemented in the system to
invoke different modes of operation for the entire ses-
sion:
(a) Print output can be spooled to the line printer on
completion of each operation or on termination of the
session.
(b) A trace switch allows the user to follow the progress
of a batch run from messages printed on the terminal.
(c) Two modes of error response in the batch operation
are available. In one mode an error immediately
terminates the session. In the other mode the processing
is allowed to go on, skipping to the next intelligible
command.
(d) Read-only access to data in other working areas is
available on request.
(e) Two versions of each slave task may be activated,
depending on the state of a switch. This feature enables
testing of modified versions of a task without disrupting
the use of the existing system. It also allows efficient use
of the available memory in test runs, if one set of the
tasks is built with a minimum of buffer space sufficient
for small images.

2.5. Image format

Images are stored one record per line as airect-access
files on disk. Each density reading is stored as a 4-byte
word. Both Perkin Elmer 1010A tapes and Optronics
tapes can be read by the system. SPIDER accesses the
PDP-11 file directory through special subroutines.

The image file consists of the image data and a
certain number of records needed to accommodate ad-
ditional space for the Fourier transform, a 128-point
histogram, and the SPIDER image-processing label. The
historgram and part of the image label contain statis-
tical information on the image that, once acquired, is
available to any subsequent operation. The status of the
statistical information is recorded by flags, which are
interrogated in each operation to decide whether the
information is already stored or whether it needg to be
computed.

Thirteen file formats are used and distinguished in
the SPIDER system (table 2). The different types of
random-access files are distinguished by label flags,
which are checked in each access for consistency with
the operation. The format for storage of the Fourier
data is consistent with the optimized fast Fourier trans-
formation program by Fraser [36].

In the SPIDER system all file names have the stan-
dard form (A B C) (LMN) . (EXT), where (ABC) are

348 J. Frank et aL / SPIDER--Modular software system for electron image processing

Table 2
File formats used in the SPIDER system

Random access, unformatted Sequential, formatted

Real 2-D
Real 2-D polar
Real 3-D
Fourier 2-D
Fourier 2-D polar
Fourier 3-D
NonJmage
parameter a)

Document
Procedure
Batch
Log a)
Results 41

~) Created in each sessions.

In the interactive mode the user input is copied into
a sequential log file. It can be called up later to recreate
the same results in a batch run. Changes of dimensions
and parameters can easily be made by editing the log
file after the session that created it.

All user input in interactive or batch operation is
handled by special subroutines that combine the func-
tions of printing the solicitation message, reading, echo-
ing, and log-keeping. The input of parameter values is
either explicit in free format or by reference to the
contents of registers filled by previous computations.

3. Command language

three letters specifying a file series and (LMN) is a
three-digit number between 001 and 999, specifying the
number of the file in the series. (EXT) is the same file
extension for the entire session and is used to restrici
the access of the image procesing to a data library.
Within the session only the first six letters of the file
need to be specified, e.g. PIC008 or RES855.

To facilitate the processing of selected files from a
file series, a variable file name specification has been
created. With PIC00I, for example, the sequence "00I"
is replaced by a three-digit number according to the
value assigned to the index I in a command-level DO-
loop, With RECXI0 the three last characters denote a
SPIDER register, causing a file name to be constructed
from the pre-fix "REC" and a three-digit number stored
in the register XI0.

At the beginning of the session and upon completing
each operation, SPIDER solicits the next command by
printing the message "OPERATION:". All possible user
responses form a language. The syntactic rules of the
language are set by rules of format (e.g., operation
commands must be entered left-justified) and by the
order of input parameters expected for a given opera-
tion. In the interactive mode the solicitation messages
serve to enforce the rules of the language. In the batch
mode the user must set up an error-free command text
with the help of the user's manual and protocols of
previous interactive sessions kept in a log file. (For
handling of errors, see section 2.4.)

The various types of commands are listed in table 3.

3.1. Basic commands

2.6. System-user communication

The system-user communication sequence c~m be
summarized as: solicitation-user response-verification
- log entry.

The solicitation line specifies the input that is next
expected in the command sequence. In the interactive
mode this line has an important mnemonic function. In
the batch mode the solicitation line is printed out along
with the input line to make the processing sequence
intelligible.

The user response comes from the terminal or, in the
batch mode, from the batch command file. The user
input is then echoed in a verifying message to ensure the
information accepted by the system corresponds to the
input intended by the user. In addition, the opening of
any file is accompanied by an explicit verification state-
ment, which includes the complete file name, title, data
and time of creation, data type and dimensions, and file
disposition.

There are over I00 basic commands relating to a
variety of operations (see appendix 1). These commands
can be roughly grouped into seven categories (examples
are given in parentheses):

Table 3
Command types in SPIDER

Type of command Example

"Basic command
Arithmetic interrogation
Arithmetic assignment
Register interrogation
Batch command
Procedure command
Branching commands

DO-loops
labels
Conditional jumps
Termination and return

RT
SIN(2- I./X10)+X20
XI5=(2**X3). 150.6
XI0
1343
PRI

DO LBi I= I, 10
LB3
IF(X50.GT.4)GOTO LB3
EN, RE

J. Frank et aL / SPIDER--Modular software system for electron image processing 349

file management (copy, file-information, delete,
rename);

image movement and editing (mask, shift, rotate, inter-
polate, insert);

display (graytone display, contour, profile, list);
contrast enhancement (density stretching, histogram

equalization, local averting);
Fourier operations (fast Fourier transform, filtration,

cross- and autocorrelation);
three-dimensional reconstruction (project, back-project,

stack, unstack);
interface with multivariate statistical analysis programs.

RUN DRIVER
(Spider V3 (06/10/80) on 09-Dec-80 a t 19:07:20)
• e n t e r p r o j e c t / d a t a eode:LHH/DAT
l tm/da t
. o p e r a t i o n : H0

mo
.ou tpu t f i l e : I'DDOOL/TEST PICTOI~
modO01, dat
• e n t e r dims (nsam~ nrtra): 45 t 50

45 50
db : [200, 050]rood001. d a c / t e s t picture
{r) 45 50 c rea ted on 09-Dec-80 a t 19:12:20 m
• (t) e s t / (s) / n e / (c) £ r c / (w) e d / (r) a n / (g) a u s s : W

v
. o p e r a t l o n : PD

• l n p u t l f i l e : ~DDOOi
mod0Ol.dat

db : [200, 050] modOOl, da t / t eat p i c t u re
(r) 45 50 created on 09~Dec-80 at 19:12:20 o
.OUtpUt f i l e : PA~O01/TEST PICTUP~ PADDED

psdOOl.dat
• e n t e r dims (nsa% nrov) : 64, 64

64 64
db:[20OsOSO]padOOl.dat/teat p i c tu r e padded
(r) 64 64 c rea ted on 09-Bee-80 a t 19:15:02 n
. ave rage? (y /n) , (c) c i r c u l a r op t ion : Y

Y
. t op l e f t coos: lOs7

tO 7
. o p e r a t i o n : PT

i t
. i npu t ~ i l e : PADO01

pad0Ol, da t
db: [200, 050 |padOOl .da t / tes t p i c tu r e padded
(r) 64 64 c rea ted on 09-Dec*80 a t 19:15:02 o
• opera t ion: PW

lea
• input f i l e : pADOOI

pad001, da t
db:[20OpOSO|po~OOl.dat/teet p i c t u r e padded
(r) 64 64 c rea ted on 09-Dec-80 a t 19:24:51 n
. o p e r a t i o n :

Fig. 3. Example of computer/user dialogue in interactive ses-
sion. The SPIDER system is run with a project code LMN and
data code DAT. The computer messages are in lowercase
letters; the user input is in capital letters. In this example a
model image MOD001 with dimensions 45, 50 is created
("MO") which contains a density wedge. If'is padded ("PD")
into a 64×64 image PAD001, with the image average as
background. The padded image is subsequently Fourier-
transformed ("FT"); this operation overwrites the image file
with the Fourier transform. Finally the operation "PW" com-
putes the modulus of the Fourier transform and stores it into
POW001. Each open access to a file results in a two-line
statement showing the file title, disposition, format and crea-
tion data. The first access to the file PAD001 after Fourier
transformation shows it to have Fourier format, denoted "(F)".

A letter after the creation date indicates whether the file
existed, before (o) or is being created (n) or modified (m).

Each operation, when invoked by one of the basic
commands, will solicit all necessary information. Nor-
really this comprises the names of input and output
files, option specification, and input parameter values
pertinent to the operation. In the following examples
lower-case letters denote messages printed by the com-
puter, and capitals denote user responses:
• operation: SH
• input file: PIC001
• output file: OUT003
• shift components (x,y): 5,6
• operation:
(Here we have left out the verifying messages.) An
example of a complete record of user/system interac-
tion, such as would be recorded on a hardcopy terminal,
is shown in fig• 3.

Basic commands may have options or outputs argu-
ments. For instance, 'TRO' invokes the Optronics for-
mat option of the tape-read command. PK Xl0,X! l,Xl2
is equivalent to the instruction "peak search, and put
the x , y coordinates and the value of the largest peak
into the registers Xl0, X1 l, and Xl2 respectively".

3.2. Arithmetic interrogation (pocket calculator)

Any arithmetic expression involving the five basic
operations (+ , - , / , *, **) and numbers or SPIDER
registers can be evaluated. In addition, the functions
SIN, COS, EXP, LOG, SQRT, and PAD can be used.
The PAD function returns, for a given argument, the
next larger number that can be represented by a power
of 2. For instance, PAD(5) = 8, PAD(45) = 64. With
this function images can be automatically padded for
operations involving radix-2 Fourier transformations
(e.g. ref. [37])•

3.3. Arithmetic assignment

Arithmetic expressions appearing on the right-hand
side of an assignment statement are evaluated as above,
and the result is put into the register appearing on the
left-hand side. The assignment statement is thus exactly
equivalent to a FORTRAN arithmetic assignment.

Register interrogation

If a register is specified in the command position, its
contents are printed on the terminal or line printer.

3.5. Batch command

A batch command has the form B(NM), where
(NM) is a two-digit number• Such a command switches

350 J. Frank et al. / SPIDER--Modular software system for electron image processing

the SPIDER input command stream from the terminal
to a sequential file named B(NM) . (PRJ) , where
(PRJ) is the project code, thus terminating the interac-
tive mode of operation. The batch file can contain any
sequence of commands and parameter values as they
would be entered by the user in the interactive session.
The log file, which records each input line in an interac-
tive session, can be used as a batch" command file to
reproduce the processing sequence.

3.6. Procedure command

The full flexibility of the processing system has been
achieved by creating a procedure calling structure. A
procedure may be regarded as a batch command se-
quence in which certain input hnes have been left
unspecified until execution time. Any file name or input
line where one or more numerical constants are ex-
pected can be replaced by a substitution line with the
general format ?(character string)?, where (character
string) is the desired execution-time solicitation mes-
sage. Such a line causes DRIVER to fetch the next-
scheduled input from the next-higher level of the calling
hierarchy, i.e., from the terminal or from a calling batch
or procedure command stream.

In the interactive mode the character string has the
function of a solicitation message. The sequence of
user-system interaction in the execution of a procedure
is therefore identical to the sequence foUowed in the
execution of a basic command. In a listing of the
procedure all substitution strings stand out from the
rest of the code, making the purpose of the procedure
immediately evident. For example:
RT
PIC001
PIC002
50.
SH
PIC002
SHI002

- 3,8
This is a command string to rotate the image stored in
PIC001 by 50 ° and store the result in a file named
PIC002. Subsequently PIC002 is to be shifted by a
vector with the components -3,8, and the result is to be
stored in SHI002.

If such a command string is to be executed many
times with different source and destination file names
and different values of the parameters (rotation angle,
shift vector components), it may be worthwhile to make
the command string into a procedure. If the inter-
mediate image file resulting from the rotation is of no

interest, the procedure would be written in the following
form:

RTI.GLS

RT
?INPUT FILE?
SCR001
?ROTATION ANGLE?
SH
SCR001
?OUTPUT FILE?
?SHIFT VECTOR (X,Y)?
RE

where GLS is the project code assigned to this session
and stored in a file named RTl.GLS. "RTI" is a freely
chosen name of the procedure with the general naming
convention (A B) (N) , where (AB) is any two letters
of the alphabet and (N) is any digit, including 0. Any
image name or parameter value in the command string
that was chosen to be a variable of the procedure is
replaced by a solicitation line in the procedure se-
quence. A return command "RE" terminates the proce-
dure, passing control to the next-higher level of the
command input stream.

When called interactively, the command RT! will
now generate the following dialogue:
.operation: RTl
?input file? PIC001
?rotation angle? 50.
?output file? SHI002
?shift vector (x,y)? -3,8
which, for the arguments chosen, leads to the same
processing sequence as the initial batch command se-
quence.

In the batch mode, similarly, the command RTI can
always be used to effect a rotation and subsequent
shifting of an image. The rules for the sequence of the
input lines and the types of value input follow directly
from the sequence of the solicitation lines and types of
.parameters solicited in the procedure. (Note that all text
after a semicolon is interpreted as a command.) For
example:

J. Frank et al. / SPIDER--Modular software system for electron image processing 351

B01. GLS

;B01 A BATCH COMMAND SEQUENCE TO
; DEMONSTRATE
; A CALL TO RTI
MO ; CREATE MODEL PICTURE: DENSITY
; WEDGE
PIC001 ; NAME OF OUTPUT FILE
32, 32 ; DIMENSION OF OUTPUT FILE
W ; MAKE IT A WEDGE
RTI ; CALL PROCEDURE RT1
PIC001 ; INPUT FILE TO PROCEDURE
50. ; ROTATION ANGLE
SHI001 ; OUTPUT FILE FROM PROCEDURE
- 3,8 ; SHIFT VECTOR COMPONENTS
PR ; USE OVERPRINTING FOR DISPLAY
; OF RESULT
SHI002 ; INPUT TO OVERPRINTING
N ; NO CONTOURING
EN P ; END SESSION AND SPOOL RESULT
; TO LINE PRINTER

3. 7. Branching commands

The branching commands in SPIDER essentially
duplicate the functions Of DO-loop statements, labels,
and logical IF statements in FORTRAN. In contrast to
the pseudo DO-loop in other systems, where the repeti-
tion is achieved by creating multiple copies of the
original command stream [22], the DO-loop is here
realized by execution-time substitutions in the reading
routines. Up to threefold nesting of DO-loops is al-
lowed; but this restriction, similar to the restriction of
the number of procedure nesting levels, is arbitrary. Its
sole purpose is to limit the storage area used by .internal
table of DRIVER to a practical size.

Branching commands are meaningful only if they
appear in a batch or procedure command sequence.

3.8. Communication between operations within a session

Within a session important parameter values can be
transferred from one operation to another by use of the
100 registers, denoted X0...X99. Any register can take
the place of any floating-point number or integer in
arithmetic expressions or input argument positions. In
addition, it can appear in an output argument position,
such as OR XI0, where the register accepts a value
computed in the operation. File names can also be
generalized by the use of registers; for example, the
input PICXI0 is replaced PIC004 if X10 has been
previously assigned the value 4.

The first 10 registers are reserved for system- and
image-related quantities and are updated during each
operation. Image dimensions and values of statistical
parameters can thus be accessed and used in a dynamic
design of the batch or procedure command sequence.

Each register, due to a special feature of DRIVER, is
local to the batch or procedure in which it appears. The
use of a particular register, say X20, in a given proce-
dure does not interfere with the value stored in the
register X20 used in a calling batch or procedure. For
example:

B01.GLS PRI.GLS

X 1 0 = 5
PRI

XI0

EN

XIO = I

RE

Here the register XI0 is local to procedure PRI, and
will therefore have no effect on the value of Xi0 in the
calling batch sequence B01: the value of X10 printed
out in response to the interrogation is 5.

Transfer of values from one level of the calling
hierarchy to another is achieved through a special com-
mand "RR" (read register). Execution of the sequence

B01.GLS PRI.GLS

X 1 0 = 5
PRI
X10

EN

RR X20
?ENTER HIGHEST REFLECTION ORDER?

RE

will transfer the value of register X10 into local register
X20 in PRI in response to the user-created solicitation
message " E N T E R H I G H E S T R E F L E C T I O N
ORDER".

Transfer of register values between one procedure
and another can be achieved by using the command
"SR", which has options for saving (S) and unsaving

352 J. Frank et a L / SPIDER--Modular software system for electron image processing

(U) the values active in all 100 registers. For example:

B02.GLS PRl.GLS PR2.GLS

PR1

X I 0 = 5

PR2

EN

XI0 = 200
X15=81.5

SR S

RE

SR U

RE

Here the commands SR S and SR U cause the values of
XI0 and Xl5 to be transferred from PR1 to PR2 along
with the contents of all other registers. Because of the
local character of registers the transferred value of X10
is not changed by the ass~snment X10 = 5 in the calling
sequence. Since the "SR" unsave call in PR2 affects
only the local register contents, the value assigned to
Xl0 in the calling sequence remains the same after the
PR2 call.

Another means of communication, both within a
session and between sessions, is the document file,
which will be described in the following section.

3.9. Communication between sessions

All register contents vanish when a session is
terminated. A general vehicle for communication of
register contents between sessions has been created in
the form of a document file. This is a sequential, for-
matted file organi7ed into keyed document records.
These records may or may not coincide with the physi-
cal 80-byte records used, depending on the number of
registers transferred. The general saving or updating
command is

SD (key), X<NI) , X(N2) , X(N3) X(NJ)

<document file name)

where <key) is an integer number or a register con-
taining an integer (with the meaning of a particle num-
ber, a DO-loop index, etc.) and X(N1) . . .X(NJ) is an
arbitrary sequence of J registers.

An unsave command of the form

UD <key), X(MI) , X(M2) , X(M3) X(MI)

(document file name)

will pick out the last entry under the number <key) and
transfer the contents of the document record into the
arbitrary sequence of I registers X (M I) , X<M2),
X(M3) X(MI) with I ~ J . The transfer is de-
termined, not by the register numbers themselves, but
the sequence of the register numbers in the SD and UD
commands. For example:
X I 0 = l
Xl l --5.2
SD 5,XI0,XI l
DCM001

UD 5,X50,X20
DCM001
This sequence will transfer the values 1 and 5.2 from
Xl0 and Xl I into X50 and X20 respectively.

A typical application of the document file is the
documentation of rotations, shift vector components
and correlation coefficients calculated in the alignment
of a series of particle. By the use of the document file
any of these quantities may be applied in a subsequent
batch run to a different set of files, or they may be used
to recreate the set of aligned files from the raw data.

Finally a "list document" option allows the user to
tabulate the entire document file using any desired
headings. For example, the command

LD 'particle number', 'Angle', 'X shift', 'Y shift', 'corr'

DCM001

will cause the first four entries in each document record
to be listed with the key numbers in ascending order
and with the column headings 'Angle', 'X shift', etc.,
applied.

4. Example

An example of extended use of the language is the
procedure RA0 (fig. 4), which performs N-fold rota-
tional averaging of an uncentered particle contained in
an image. The particle is assumed to be centrosymmet-
ric. In this example a batch file B01 is prepared to
subject 10 particles, contained in the image series
PAR001-PAR010, to six fold rotational averaging. The
batch commands instruct SPIDER to apply RA0 with
N = 6 to 10 particles. RA0 brings the particle into the

J. Frank et al. / SPIDER--Modular software system for electron image processing 353

image center, generates N - - 1 symmetry-related posi-
tions by rotating the particle and adds these to the
centered input image.

The method of centering a centrosymmetric motif
makes use of cross-correlation [13,37]. First the shift
vector between the motif as it appears in the 180 °-
rotated image is determined. This shift vector has the
same direction, and is twice as long, as the vector
needed to bring the particle into the image center. The
procedure CTI which is called at the beginning of RA0
is based on this principle. The image is rotated by 180 °
and cross-correlated with its 180°-rotated version. Both
images are padded into a larger array as preparation for
cross-correlation to prevent artifacts in the cross-
correlation function due to circular overlap [39]. The
shift vector found in the search of the correlation peak
("PK") is then halved and applied to the original image.
The output file of CTi , TMP001 thus contains an image
with the particle in centered position. Through the use

a
; DO1 D~ONSTRATE USAGE OF P ~ C E D ~ RAO
DO LBI 1"1~ 1 0 ; DO-LOOp OVER PARTICLE SERIES
RAO ; CALL G~ERAL PROCgD%~E ~DR ROTATIONAL AVEPAGING
PAROOI ; INFUT FILE FOR ROTATIONAL AVERAGING
(6 .) ; MAKE IT SIX-FOLD
RA~q)01 ; OUTPUT OF ROTATIONAL AVERACI~C
LH1 ; I~D OF DO-LOOp
EN ; ~ D RE'ION RUN

b
; PAO PROCEDDRE TO PER~ORM A I ~ T I C CEHTERI~C AND N '~LD ROTATIONAL
; AUERAGIND OF AN IMAGE CONTAINING A C E h T R O ' S ~ T E I C N~TIF.
FI ; FILE INFORNATION TO INTRODUCE PILE TO BE AVERAGED
?II4~GE TO BE ROTATIORALLY AVERAGED? ; I~PUT TO PILE INFO ~ INPNT TO RAO
XII~XL STORE NDP~RE, OF SAI~LES OF I ~ J T I14&GE IN REGISTER E l l
XI2•X2 STORE HIJ'r~ER OF RUNS OF INPUT D'~GE IN REGISTER XI2
CT1 PROCEDURE CALL: CENTER MOTIF USING CRUSS~DORRELATION
PI INPUT TO CTI - F~LENAR~ ENTERED IN RESFON~E TO IST QUERY
T~O01 TEI~ORARE FILE TO STORE CENTERED OUTI~f IMAGE
RR Y~O READ SVFg~TRY FACTOR Ih'FO REGISTER ~ 0
?SY)~TRY FACTOR? ; VALUE OF SYtS~RY FACTOR - INPUT TO RA0
FI ; FILE IN'FUP~TION t~ED TO READ IN ~ OF DOTFOT FILE
?ROTATIOHALLY AVERAGED IMAGE? ; OUTPUT FILE OF BA0
IF(X20. EQ. l .)GOTO LS2 ; ONE-FOLD AVERAGING ~-q/4S TAUE NO ACTION
TE(EIO. LE.O.)GOTO LB3 ; GENERATE ERROR ~SSAGE IF FACTOR .LE.O

~L FROM HEHE ON HORI~AL SY~TRY FACTORS GREATER THAN I
CREATE ZERO BACKGROUND FILE WITH THE DESIRED OUTleT FII,E~t%I~

P3 OUTPUT OF EL • FILENAI~ ENTERED IN RESPONSE TO 3RO QUERY
Xlt~X12 DI)~HSIOHS OF FILE TO BE CREATED - DI2~NSIONS OF INPUT IMAGE
• THAT WERE PREVIOUSLY STOKED
DO LB1 I -2 , ~ O ; GO-LOOP TO GENERATE AND ADD E20-1 ROTATED, SYI~TRY-

~o-(z.1
RT
TUPO01
ROTDOI
X30

SffFO01

DE
ROTOOI
DE
~ 0 !
RE

DP
~ G O I
P3
RE

ON
RE

RELATED IMAGES
*360./~?.0 ; CALCULATE ROTATION ANGLE
ROTATE. CENTERED FILE
INPUT TO ROT.ATE • OUTFU'T OF PROCEDURE CALL CTI .~S0VE
OUTPUT OF ROTATE GOES INTO TEI'~ORARY FILE
P~EATION /d~Gl~ ~ CALCULATED BEFORE
ADD OUTPUT OF ROTATE TO PREVIOUS AVER#~E
IMAGE TO BE ADDED TO ~ RESPONSE TO THIRD QUERY
D4&GE TO HE ADDED " OUTPUT OF ROTATE
NO F~RTHER II4AGES TO BE ADDED TEI~ STEP
END DO -LOOP
DELETE T~ORARY FILES
t4A/~ 0P FELE TO FE DELETED

DUENNA. R E T ~
HERE FOR TRIVIAL CASE OF ONE-FOLD S ~ T R Y

IN CASE OF ONE-FOLD AVERAGINO~ SII~LY GOlf INTO OUTPUT OF RED
OUTPUT OF CTI - INPUT TO COPY
OVD~T OF COPY = F I L E I ~ ENTERED IN RESPONRE TO 3~D Q ~ Y
P.ETt~M FROM ONE-FOLD
JUUP HERE FOR ILI,RC.qL SYIg~TRIZATIOH PACTOEN

ERROR *~e SYI4~I'RIZATIOH FACTOR ZERO OR NEGATIVE
R ~ E N PROH ERROR SECTION

C
; DTL nOD PROCEDURE TO CENTER A CEHTRO-SYtO~TRIC MOTIF
RT ; ROTATE INPUT II~DE BY ~80 DEGREES TO CREATE SYI~TREoRELATED INAOE
?I~AGE TO BE CENTEP~D? ; IHPUT TO ROTATION
INVDO1 ; OUTPUT OF ROTATION
(180.) ; ROTATION /d4OLE
)~I-PAD(2*XI) ; COMPUTE DI~NSIOUS OF PADDED ARRAY. P~KE THEM I~ICE THE
~ 2 - P R D (2 * ~) ; DD~USIOUS OF INAGE~ AND ROUND UP TO NEXT INTEGRE THAT IS A
• POWER OF TWO
PD FAD INPUT D{AGE AS PREPARATION OF CROSS'CORRELATION
p / INPUT TO PADDING = P I L E ~ ENTEKED IN RESPONSE TO lET QUERY
pADOOI OUTPUT OF PADDING GOES INTO TEMPORARY FILE
X2~ ~ 2 DI~REFOH OF PADDED ARRAY AS CALCULATED SETORE
Y YES m USE AVERAGE OF n4AOE I~R PADDING ~ADEGROUND
(1, I) PAD INTO UPPER LEFT CORNER (NO~E THAT FADDINC COORDINATES ARE
; IRRELEVANT FOR CROSS-CORRELATION RESULT~ PROVIDED ~4E SA~ ONES
• ARE USED FOR BOTH IP~GES) P
PD PAD I80"DEGREES ROTATED lieGE
INV001 INPUT TO PADING • OUTPUT OF ROTATE
pADOO2 OUTPUT OF PADDING GOES INTO TI~ORARY FILE
X21s X22 DD~NSIONS OF PADDED ARRAY AS ABOVE
Y YES, USE AVERAGE OF IHAGE FOR PADDINC BACKCROUND
(1 s 1) USE SAI'~ PADDING COOROLqATES AS ABOVE
CC CRO6S-CORRELATE PADDED INPUT WITH PADDED~ 180 DICE. ROTATED II4AGE
FADOO[USE PADDED ORICD{AL AS FIRST INPUT TO CO; TO BE OVE~ITTEH BY
• CROSS -CORRELATIOH F~CTFOH
pADO02 ; USE PADDED~ 180-DECR ROTATED I~OE AS SECOND INPUT TO CD; TO BE
• OV~RITTEN BY ITS FOURIER TRA~TORH e

N ; NO FILTRATION OF CONJUGATE ~ I E R CROSS-PRODUCT
PK XLI~XI2 ; SEARCH THE CROSS-CORRELATION FUNCTION FOR P R ~ STORE
2" ! POSITIONS IN REGISTERS XI[,XI2 FOR LATER USE
rADOOI . INPUT TO PFAK-SEARCH ~ CEOSS-COP.RELETION FI~ICTIOH FROH PREVIOUS STEP
(3) ; LIST OF 3 HIGHEST PEAKS ON PRINTOUT
XII--XII/2 ; CALCULATE NEGATIVE HALF OF PEAK SHIFT VECTOR, Tills IS THE
X12='X12/2 ; VECTOR BY ~14ICH THE D4AGE ;'~.S TO BE SHIFTED TO BE CENTERED
SH ; SHIFT ORIGINAL I ~ G E
PI ; INPUT TO SHIFT - F I L ~ ENTERED IN RESPONSE TO lET QUERY
?CENTERED PILE? ; OUTleT OF SHIFT - OUTPUT OF THIS PROCEDURE
Xllj X12 ; USE VECTOR COMPONENTS DOUBTED ABOVE TO CENTER M G E .
DE ; DEI,,EI~ ALL TEMPORARy FILES
PADOOI
DE
PADOO2
DE
INVl001
RE ; RETU$~H

Fig. 4. Example of a three level calling structure in command
language. Ten images are stored in PAR001 PAR010, each
containing a particle projection in uncentered position. To be
computed is the sixfold, rotationally symmetrized average of
the centered particle. The user need only set up B01 (a), a batch
file utilizing a DO-loop over the particle series, and a call to
RA0 (b; general rotational symmetrization), specifying 6 as the
symmetry count. The job of centering a centrosymmetric motif
is delegated to the procedure CT1 (c) which is called by RA0.
Both RA0 and CTI are part of a standard procedure library
and make use of existing basic operations such as cross-
correlation, rotation, and shifting. Since no compilation and
linking are involved, the development of the procedures takes
no more than a few minutes.

of system registers containing image dimensions, proce-
dures can be written in such a way that they are
applicable to images of any size.

Another feature of the command language, the use of
symbolic references to previously entered input Lines, is
evident from RA0. In this procedure Pl and P3 are used
to invoke previously entered file names.

Another example, the procedures used to align par-
ticles that have random orientations and positions, was
reported earlier [21].

354 J. Frank et aL / SPIDER--Modular software system for electron image processing

5. Documentation

The system documentation consists essentially of
four parts: a user introduction explaining the main con-
cepts; a command manual, which outlines the
system/user dialogue for each operation; a cross-
reference table, which lists the commands and the rele-
vant sections in the user introduction for a large number
of keywords; and an alphabetical list of subroutines
making up the package, along with brief explanations of
their functions. All four parts of the documentation are
updated each time an operation is changed or added to
the existing package.

In addition there is documentation of the SPIDER
procedures. User-built procedures are normally very
specific to a project and have no practical value beyond
the lifetime of the project. Only a few procedures that
are generally useful are adopted into the system's proce-
dure library. The system/user dialogue for such proce-
dures is explained in the same way as the dialogue for
basic commands in the command manual. Documenta-
tion of the remaining procedures is the user's responsi-
bility.

tion (existence of file, number of records and record
length) can be interrogated in FORTRAN routines.

These functions are normally supported by most
minicomputer configurations, and for these the imple-
mentation of the SPIDER system should offer no par-
ticular problem. The most drastic changes concern the
system-specific file conventions.

7. Conclusions

Our software system resulted from an attempt to
realize a large variety of image-processing operations on
a small computer and to construct a control language
that allows branching, iterating and procedure-nesting
on several levels.

The price for the flexibility of the system is overhead
time for searching of commands and swapping of slave
tasks. However, this price may not be too high, consid-
ering the time and expenditures involved in the creation
of rapidly ageing, project-oriented programs.

A separate paper will be devoted to applications of
the SPIDER system in the main areas of electron image
analysis.

6. Transportability

SPIDER was designed initially for the DEC RSXI ID
operating system and then converted to run under
RSXI IM version 3.2. The system layout into several
tasks will be advantageous for any minicomputer system
with multi-user environment. The main features affect-
ing the transportability are that (l) initiation of slave
tasks by a resident master task is supported; (2)
SEND/RECEIVE communication allows the master
task to initialize important parameters of the slave task;
(3) file names are created and dynamically changed at
various points in the program system according to the
DEC file-ll naming convention; and (4) file informa-

Acknowledgements

Many colleagues and students have contributed to
the gradual growth of SPIDER. We wish to acknowl-
edge the help of Timothy Bilash, William Goldfarb,
Richard Green, Robert Marshal, Richard Pelavin, and
Vicky Riffle. Special thanks are due to Dr. William
Moyer for many suggestions and assistance.

We thank Adriana Verschoor for stylistic corrections
and comments. We are grateful to Dr. P.R. Smith for
suggesting the survey in this form, and to all authors of
other software systems for sending us detailed informa-
tion.

Appendix 1, Table of SPIDER commands

(Commands created for interfacing multivariate statistical analysis programs are not included in this list.)

Operation Short description Function

AC Autocorrelation
AD Add
AF Angular Fourier
AI Angular interpolation
AR Arithmetic operation
BC Box convolution

Auto-correlate an image using Fourier method
Add two or more images point-for-point
Fourier transform in azimuthal direction
Convert cartesian into polar representation
Perform point-for-point arithmetic operation on image
Form local average and mix with original image

J. Frank et al. / SPIDER--Modular software system for electron image processing 355

Appendix 1, Table of SP IDER commands (continued)

Operation Short description Function

BL Blank
BP Back projection
CC Cross-correlation
CE Contrast enhancement
CF Construct Fourier

CH Correlation histogram

CN Convolution
CO Contour
CP Copy
CR Cross-reference
CS Central slice

CT Concatenate
DC Determine common line

DE Delete
DF Density foldover
DO DO-loop
DU Dust

ED Edge enhancement
EF Extract Fourier
EN End
EX Exit
FC File contour

FF Fourier filter

FI File information
FL Fourier list
FP Fourier interpolation
FS Find statistics
FT Fourier transform
GF General filter
GP Generate projections

GS Gray scale
HI Histogram
IF Logical IF

IN Insert
IP Interpolate

LB # Label
LD List document
LI List file
MA Mask
MD Mode
ME Menu
MO Model
MR Mirror

Create image with constant background
Back-project in two or three dimensions
Cross-correlate two images using Fourier method
Stretch density scale/histogram-equalize
Construct a Fourier transform from set of
amplitudes and phases
Plot histogram of correlation values or other
values stored in document file
Convolute two images with each other using Fourier method
Contour plot
Copy
Extract Fourier from existing projection-Fourier stack
Obtain 2-D section of 3-D volume in arbitrary
direction
Concatenate two or more images
Determine tilt axis and tilt angle from
marker coordinates for back-projection
Delete file
Obtain display with bit-clipping
Start of DO-loop
Reset image points that are off the mean by
3 standard deviations or more
Enhance edges in image by using recursive filtering
Extract 2-D Fourier from 3-D Fourier
End SPIDER session
End SPIDER session and save LOG file
Contour image by bit-clipping and superpose
on image
Apply low- or high-pass filter function to
Fourier transform
Show statistical attributes of image
Print selected portions of Fourier transform
Interpolate by padding Fourier transform
Compute statistical attributes of image
Compute Fourier transform or inverse
Mask Fourier transform on reciprocal lattice
Extract I-D projection lines from image
series for back projection
Display image using Versatec halftone software
Compute and display histogram of image
Conditional jump depending on arithmetic
comparisons
Insert an imago into a larger one
Interpolate into arbitrary rectangular
format using bilinear interpolation
Destination label for conditional jumps and DO-loops
List contents of document file ordered by key
List any file by rows
Apply circular mask to image
Select global processing mode
Display menu of commands
Create model image
Create mirror-related version of image

356 J. Frank et al. / SPIDER--Modular software system for electron image processing

Appendix 1, Table of S P I D E R commands (continued)

Operation Short description Function

MU Multiply
OR Orientation

PA Patch

PD Pad

PF Profile
PH Phase Fourier stack
PJ projection
PK Peak search
PO Poem
PR Print
PS Pick slice
PW Power spectrum
RA Ramp

RC Real space convolution
RD reduce transform

RE Return

RF Rotational filter
RN Rename
RO Rotational average
RR Read register
RT Rotate
SC Scale Fourier stack
SD Save document
SF Stack Fourier
SH Shift
SI Stack interpolation
SK Stack 2-D slices

SL Slice
SQ Square
SR Save registers
SS Serial section

ST Set label
SU Subtract
SZ Squeeze
TA Tilt angle
TF Tilted transfer function
TI Tape information
TM Time
TP Three-D plot
TR Tape read
TT Title
TV TV display
TW Tape write
UD Unsave document
WI Window

Multiply two images point-for-point
Find orientation between two images or auto-
correlation functions
Add small image onto large image at arbi-
trary position
Pad image with average or background constant
to make it larger
Plot profile of a selected image row
Apply phase shift to projection-Fourier stack
Compute I-D or 2-D projection of 2-D or 3-D volume
Search positions of N highest peaks
(Operation to celebrate the 100th command)
Display image using overprinting
Pick slice from 3-D volume
Compute modulus of Fourier transform
Determine least-squares density wedge of
image and subtract
Convolute image with arbitrary rectangular array
Create reduced Fourier transform from amplitudes
and phases of reflections
Return from procedure to next-higher
level of command language
Filter angular Fourier
Rename file
Compute rotationally averaged profile
Read number into register
Rotate image
Scale projection-Fourier stack
Store register contents in document file
Edit projection-Fourier stack (add, delete, insert)
Shift image
Interpolate projection-Fourier stack into 3-D Fourier
Create 3-D volume by stacking images
representing slices
Slice a 3-D volume in arbitrary direction
Square image point-for-point
Save/unsave registers temporarily
Align images of serial section according
to marker positions
Edit statistical and protection label of file
Subtract two images point-for-point
Shear image to conform with arbitrary unit vector angle
Refine tilt angle using positions of reflections
Generate a transform function vs. defocus display
List contents of tape from microdensimeter
Print wall clock time
Make perspective plot of an image
Read image from tape to disk
Change title of image
Display image on halftone display system
Write image onto tape in microdensitometer format
Read registers from document file
Window out portion of image

J. Frank et al. / SPIDER--Modular software system for electron image processing

Appendix I, Table of S P I D E R commands (continued)

357

Operation Short description Function

WT TV Window Window image interactively/index reciprocal lattice interactively
WU Wurzel (square root) Compute point-for-point square root of image
WV Window averaging Window out and sum portions from image according

to vectors stored in document file

References

[I] P.W. Hawkes, Computer Graph. Image Processing 8 (1978)
406.

[2] D.L. Misell, Image Analysis, Enhancement and Interpreta-
tion (North-Holland, Amsterdam, 1978).

[3] W.O. Saxton, Computer Techniques For Image Process-
ing, in: Advances in Electronics and Electron Physics,
Suppl. 10, Ed. L. Marion (Academic Press, New York,
1978).

[4] R.A. Crowther and A. Klug, Ann. R.ev. Biochem. 44
(1975) 161.

[5] J. Frank, J. Microsc. 117 (1979) 25.
[6] P.R. Smith, Ultramicroscopy 3 (1978) 153.
[7] P.W. Hawkes, in: Computer Processing of Electron Micro-

scope Images, Ed. P.W. Hawkes (Springer, Berlin, 1980).
18] J. Frank, in: Advanced Techniques in Biological Electron

Microscopy, Ed. J.K. Koehler (Springer, Berlin, 1973).
[9] J. Frank, Biophys. J. 12 (1972) 484.

[101 O. KObler, M. Hahn and J. Seredynski, Optik 51 (1978)
171,235.

[I 1] R..E. Burge, T.C. Dainty and R..F. Scott, Ultramicroscopy
2 (1977) 169.

[12] P.N.T. Unwin and R. Henderson, J. Mol. biol. 94 (1975)
425.

[13] J. Frank, W. Goldfarb, D. Eisenberg and T.S. Baker,
Ultramicroscopy 3 (1978) 283.

[14] H.P. Zingsheim, D.-Ch. Neugebauer, F.J. Barrantes and J.
Frank, Proc. Natl. Acad. Sci. USA 77 (1980) 952.

[151 J. Frank and W. Goldfarb, in: Electron Microscopy in
Molecular Dimensions; State of the Art and Strategies for
the Future, Ed. W. Baumeister and W. Vogell (Springer,
Berlin, 1980) p. 261.

[16] J. Frank and M. van Heel, in: Pattern R.ecognition in
Practice, Eds. E.S. Gelsema and L.N. Kanal (North-
Holland, Amsterdam, 1980) p. 235.

[17] M. van Heel and J. Frank, Ultramicroscopy 6 (1981) 187.
[18] D.. DeRosier and A. Klug, Nature 217 (1968) 130.
[19] J.E. Mellema, in: Computer Processing of Electron Micro-

scope Images, Ed. P.W. Hawkes (Springer, Berlin, 1980)
p. 89.

[20] F.C. Billingsley, Advances in Optical and Electron Micros-

copy, Vol. 4, Eds. Barer and V.E. Coslett (Academic Press,
London, 1971) p. 127.

[21] J. Frank and B. Shimkin, in: Proc. 9th Intern. Congr. on
Electron Microscopy, Ed. J.M. Sturgess (Microscopical
Soc. Canada, Toronto, Ontario, 1978) Vol. I, p. 210.

[22] R.H. Wade, A. Brisson and L. Tranqui, J. Microsc. Spec-
trosc. Electron. 5 (1980)699.

[23] S. Kawata, Y. Ichioka and T. Suzuki, J. Phys. E (Sci.
Instr.) 11 (1978) 1191.

[24] S. Kawata, Y. Ichioka and T. Suzuki, Optik 52 (1978) 235.
[25] W.O. Saxton, T.J. Pitt and M. Horner, Ultramicroscopy 4

(1979) 343.
[26] M. Horner, in: Developments in Electron Microscopy and

Analysis, Ed. J.A. Venables (Academic Press, London,
1976) p. 209.

[27] W.O. Saxton, Computer Graph. Image Processing 3 (1974)
266.

[28] B.L. Trus and A.C. Steven, Ultramicroscopy 6 (1981) 383.
[29] R.. Hegerl, in: Electron Microscopy 1980, Eds. P. Brederoo

and W. de Priester (7th European Congr. on Electron
Microscopy Foundation, Leiden, 1980) Vol. II, p. 700.

[30] M. van Heel and W. Keegstra, Ultramicroscopy, to be
published.

[31] D.J. DeRosier and P.B. Moore, J. Mol. Biol. 52 (1970)
355.

[32] W. Goldfarb and J. Frank, in: Proc. 9th Intern. Congr. on
Electron Microscopy, Ed. J.M. Sturgess (Microscopical
Soc. Canada, Toronto, Ontario, 1978) Vol. I, p. 22.

[33] W. Goldfarb, J. Frank, J.C. Hsung, C.H. Kim and T.E.
King, in: Cytochrome Oxidase, Eds. T. King, Y. Orri, B.
Chance and K. Okunuki (Elsevier-North Holland-
Biomedical Press, Amsterdam, 1978) p. 161.

[34] J. Frank, J.N. Turner, M. Marko, K. Asmus and D.F.
Parsons, in: Proc. 38th Ann. Meeting EMSA, San Fran-
cisco, 1980, Ed. G.W. Bailey (Claitor, Baton Rouge, LA)
p. 46.

[35] R. Gordon, R. Bender and G.T. Herman, J. Theoret. Biol.
29 (1970) 47 I.

[36] D. Fraser, ACM Trans. Math. Softw. 5 (1979) 500.
[37] J. Frank, in: Computer processing of Electron Microscope

Images, Ed. P.W. Hawkes (Springer, Berlin, 1980) p. 187.

